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SUMMARY 

In a systematic construction of a theory for bubbly liquids, one encounters the problem of the interaction 
between two spheres in a perfect liquid. This paper is devoted to that problem for the case in which the 
motion stems from the instantaneous acceleration of the liquid in which the spheres are immersed. Trajec- 
tories described by their separation vector in the course of time are numerically computed with use of the 
analytically obtained flow potential. An approximate theory is developed from which qualitative properties 
of these trajectories are obtained. The effect of the relative motion on the pair distribution in e.g., a bubbly 
flow is considered as well. 

1. Introduction 

The problem considered in this paper has to do with the theory of  flow of  inhomogeneous 

media, in particular with the flow of  particles or bubbles dispersed in a liquid of  small viscosity. 

The theoretical approach is, like in the kinetic theory of  gases, to carry out successive approxi- 

mations in terms of  the volume density of  the inhomogeneities. In the lowest approximation 

one considers the particle to be isolated in the liquid. The interaction, which is (and here, of  

course, is the difference with the kinetic theory of  gases) of  a purely hydrodynamic nature, is 

neglected in this approximation. In the next approximation the interaction with just one other 

particle is allowed for. The outlines of  such a theory for mixtures of  liquid and small gas 

bubbles is given in Van Wijngaarden [11. The problem of  the hydrodynamics of  two particles 

moving in a perfect liquid appears as an element in the theory. The present paper deals with 

that problem and is, for convenience, restricted to rigid spheres of  zero mass. For liquid in which 

there are no surface-active agents and in which the relative motion is dominated by inertial 

effects, this is a reasonable model for the real flow (for a review of  properties of  such mixtures, 

see e.g., Van Wijngaarden [2] ). The equation o f  motion for each of  the spheres in such a pair is 

fA pdA = 0, (1.1) 

in which p is the pressure and dA an element of  the surface of  the sphere over which the 
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integration is carried out. The pressure p is connected with the potential ~b of the flow by 

Bernoulli's Theorem, which is (t being time and p the liquid's density): 

p a~b 
-- ½ {[V~b[ } 2 . (1.2) 

p ~t 

So the question is how to obtain the flow potential ~. 

To be specific We shall consider the problem of two spheres, separated by a distance R, 

immersed in an infinite perfect liquid, which is at rest at times t < 0. At t = 0 the liquid is 

accelerated, for example, by a piston, and we ask for the subsequent motion of the two spheres. 

For equal velocities the potential for two spheres has been obtained by Jeffrey [3] in terms of 

twin spherical expansions. In that form the potential has been used by Van Wijngaarden [4] to 
calculate the motion right after the instantaneous acceleration. Then only the term linear in q~ 

in (1.2) counts. For t > 0 also the quadratic term is important which complicates severely the 

problem of finding the motion from (1.1) and (1.2). The construction of the potential for the 

motion of two spheres with unequal velocities is done in Section 2. The derivation of the 

equations governing the mean motion and the relative motion is presented in Section 3. In 

Section 4 we consider the trajectory described by the separation vector R in the course of time 

after the instantaneous acceleration discussed above. Numerical computation of this is possible 

with help of the results of Section 3. A number of results is shown in Section 4. In view of the 

complexity of the equations, it is rather difficult to interpret and explain these results. Quali- 

tative insight is obtained by considering a simplified system of equations in which, from the 

singularities, only the dipoles are taken into account, higher-order singularities being disre- 

garded. Albeit even then analytical solution does not appear possible, a number of important 
results regarding the properties of the trajectories are obtained. In Section 5 where this is done 

these features are also compared with solutions of the exact equations, dealt with in Section 4. 

Finally, in Section 6, we consider the problem of finding the probability distribution, as 

affected by the relative motion. 

2. Potential for the motion of  a pair of  spheres in a perfect liquid 

We consider two massless spheres, A and B, of equal radius and immersed in a perfect liquid 
which is at t = 0 instantaneously accelerated to velocity U. As a result of the acceleration of 

the liquid, the spheres start to move in such a way that there is no resultant force on each of 

them. Initially only the term -- O(~/Ot (see 1.2) in Bernoulli's Theorem counts, and the spheres 

acquire a velocity which has the same value for each of them and which is directed along U. 

This velocity, which has been calculated already in [4], serves as initial condition in the present 
work in which the motion for t > 0 will be investigated. 

Since initially the motion is in the direction of U, a plane containing U and the line connect- 
ing the centres will also contain the initial velocities. In view of symmetry, no motion of the 
spheres will be induced in the direction of the normal to this plane. The liquid velocity, of 
course, has a component in that direction, however, not the spheres. In the following we will 
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Z/  

Two spheres A and B moving with velocities v A and v B in reference frames used in the paper. 

use several coordinate frames, which are summarized in Figure 1. First there is a Cartesian 

frame (x, y,  z), the x, y-plane of  which coincides with the plane through U and the vector R 

directed from the centre sphere A to that of  sphere B. The x-axis is along the line of  centres. 

We indicate the unit values in x- and y-direction with i and j respectively. Then there are 

spherical polar coordinate systems ( r l ,  01, ~) and ( r2 ,0z ,  ~) connected with the centres x of  A 

and x2 of  B in the manner shown in Figure 1. Finally, parallel to the x, y-plane, there is a fixed 
plane of  reference in which there is a rectangular frame (Z1, Z2) and in which the angle sub- 

tended between R and U is indicated with 0. 

The spheres will, after acquiring equal velocities at t = 0, obtain different velocities after 

t = 0 because of  the interaction stemming from the term --½ {]V~b[} 2 in (1.2). When these 

velocities are indicated with v a andv B respectively, the velocity common to both is ~ (v A + vB) 

and the relative velocity is (v a --vB).  

Since Laplace's equation, which the potential 4~ has to satisfy, is linear we may superpose 

solutions for the case in which these velocities are equal and for the case in which they are 

equal in magnitude but opposite in sign. The former of  these has been given by Jeffrey [3] in a 

study on steady heat conduction involving two spheres and his solution was used by Van 
Wijngaarden [4] in connection with finding the effective virtual mass of  a sphere in a suspen- 

sion. In both papers the potential is expressed in terms of  spherical polar coordinates. We shall 

start with this form, although we will later need expressions in x, y and z. With 

G = U - - ~ ( v a  + v B )  = G o i + G l j  (2.1) 

an appropriate solution of  Laplace's equation is 

1 

/n= 0 /1 = irl + Srnn \r2]  GmIg(ml~I~l) Prim ( c o s  O 1) " ~(2) - -  p ~ m ( c o s  02 ) cos m/a . 

(2.2) 
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In this expression the oran¢'(1) and oran"(2) are coefficients to be determined from the boundary con- 
dition on the spheres demanding the vanishing of the relative velocity component in the 
direction of the normal to the surface. In order to apply this condition on either of the spheres, 

we have to express spherical harmonics of argument rl and 01 in harmonics of argument r2 and 
~2. This can be done with the help of the relation (see e.g., Jeffrey [3] ) 

aln+l / x n + l  o* / /7  __. 

\r i ] q + m 
(2.3) 

Using this relation we find from the boundary conditions 

- 1 + , , ] o , , , .  + , . c 3 - i , 1 £ 1  q=ra ?l "[- omq ~R] = ( -  1)i(m-')a6'n '  (2.4) 

where 6ij is the Kronecker delta. From symmetry it follows that we may write 

g(1) (2.5) ran = (--1)m-'g~)n = agmn" 

Next we write gmn as a series expansion in (a/R), 

1"* {alp 
gran - - 2  p~-~=oKmnp\-'RJ " ( 2 . 6 )  

Inserting this together with (2.5) into (2.4) gives 

' ..1_ n + q + P + l  

- - ( l + l )  v~oKmnP(R)V+ +m} v=°qt~ (--1)ra-'Krapq(R) 

= 2 ( - -  1 ) r a - 1 8 1 n ,  (2.7) 

from which, by collecting like powers of a/R, 

Krano = (-- 1)m81n, 

l/2[p-n-3] 

n +---~ q=l + KraqW_q_n_l). (2.8) 

Next we consider the case where A and B have velocities of equal magnitude, but opposite in 
sign. Introducing 

w = ½(VA - -Vs)  = Woi+ wlj,  (2.9) 
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we write, in analogy with (2.2), 

l (ci1 / (-- P ~  (cos 02) cos m/l. - - ~  2 Y. w~ N.> -~ e.~(cos0,)-:.~2. , 
m = O  n=m \ r l ]  

(2.10) 

Application of the boundary conditions 

= [ w 'n ,  on sphereA, 
V ~  2 • n 

t -- w • n, on sphere B, 
(2.11) 

n denoting a unit vector in the direction normal to the surface, yields with help of (2.3) 

+ 1 ]  : (i) q- ~ -I-q]f~ 3-i) +q+ =- - ( - -1 ) i (m- l )a~ ln  . (2.12) 
n]Jmn q=m +m] mq 

The antisymmetry expressed by (2.11) allows the simplification 

f~mln) = (--1)m-aj~m2 ~) = afro,, 

which gives, upon writing 

(2.13) 

and substitution in (2.12), 

Lmno = (--1)m61n, 

Lmnp = (--1)m n 1/:~[p-n-31(~ + q ) 
n +-----il • Lmq(P-q-n-')" (2.14) 

q=l + m 

For further reference we note that from (2.6) and (2.8) on one hand, and from (2.13) and 
(2.14) on the other, it follows that 

finn = (-- 1)n+lgmn -- . (2.15) 

By combination of (2.2) and (2.10) we find for the potential of the flow around the two 
spheres A and B, the first moving with velocity v a and the second with velocity vB, the velocity 
at infinity being U, 
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¢ : ~b a : U ' x +  Z aOmnlS] pm(c°sO,)c°sml a 
?'l,l = O rt = wl \ra/ 

(2.16) 

+ ~ aEmn(--1) m-x +q U~(cosOx)cosmla, 
m=O n=m = + m 

when referred to coordinates centred in A. In this expression 

Dmn = Gmgmn -- win finn , (2.17) 

Era n = Gmgra" + win finn. (2.18) 

Likewise, in terms of r2,02 and/s, 

I ~ la\,,+l 
(~ : ~B : U'X"J- ra=0 ~ n=ra (--1)m-laEmn[-~2) Pnm(c°s0 ' ) c°sm/a  

1 (R)n+l ~ (n . . J rq ) (~ )q  
+ • ~ aOmn P~(cosO2)cosmla. 

m=0 n=m o=m \q + m 

(2.19) 

3. Motion of  a pair of  identical spheres 

The dynamics of a closed body moving through an infinite quiescent liquid can be formulated 

in terms of a Lagrangian, see e.g., Lamb [51. The insertion of rigid wails in the flow can be 

taken into account as well [6]. However, for systems of bodies moving through the liquid, no 

exact general theory is available because of the complexity of the interactions. For the present 
problem which involves two bodies, we make use of a result obtained recently by Landweber 

and Miloh [7] for the force exerted on a body moving through an arbitrary flow in the case in 
which this flow can be represented by multipoles of given strength. 

Let a multipole of order q (a source has order zero, a dipole has order one, etc.) have a 

strength Mq and be situated in (x k, y~, z~). Accordingly, when the velocity field u has a 
potential ¢, 

u = V~, (3.1) 

the velocity is singular in (x~,, Yk, zl,). We can write therefore (u)h as the sum of a regular part 
(un)k and a singular part (us) k. In addition we introduce the volume r of the considered body, 
and we define 

~q 

D~ 8xO, ay#Sz.r, a +/~ + 7 = q, (3.2) 
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o = Ex - x ~ )  ~ + ( y  - y k )  2 + (z  - z k ) ~ }  I/~. (3.3) 

The force F on the body with volume ~- and moving with velocity v in the arbitrary potential 
flow is, as obtained by Landweber and Miloh [7],  

d 
F = p ~ { ~  i 4~r ZMqD~(o)k } -  4~Tp ZMqDg(un)k. 

k k 
(3.4) 

The derivation of (3.4) by Landweber and Miloh [7] contains some errors which, however, do 

not affect the final result [8]. This is confirmed by a derivation along quite different lines by 

one of  the present authors [9],  which gives the same result. To see how singularities in the 

expressions (2.16) and (2.19) compare with the multipoles Mq, we make use of  the cartesian 
frame (x ,y ,  z) in Figure 1. The relation between these coordinates and the spherical coordinates 

displayed in Figure 1 is 

x = r~ cos0~ = R - - r 2 c o s 0 2 ,  

y = rl  sin01 cos/~ = r2 sin02 cos/s, 

z = r~ sin0~ sin~t = r2 sin02 sinv.  

(3.5) 

To convert (2.16) and (2.19) in these coordinates, we use the following relations (Morse and 

Feshbach [10] pp. 1270, 1281) 

a + a )m an_ m I 
a-yy - i-~z axn-m r, 

- (-- 1) n+m (n --m)!e+traupm(cos O1),t (3.6) 

2triton ! 
02 ~r X n cos mudu = (-- 1) m (n + m----~! rTP~n (cos 01 ) cos m/a, (3.7) 

with 

X = x + i y c o s u + i z s i n u .  (3.8) 

Similar expressions hold for r2 and 02. For those coordinates a/ax has to be replaced by 
(see 3.5) a / a ( R - x )  = -  ~/ax. Taking notice of  this we can write the expressions (2.16) and 

(2.19) for ~b a and @B in terms o f x , y  and z with the help of  (3.6)-(3.8) :  

1 

+A : ,.,.,<+ Z 
#'n=o r l = m  

, 

(-1)"+"a"+lO"" --m)! I  -lJ 
--m=o ~ n=m~ aEran t~)n+' ~ (n +q) (q+m)! (i)-ra f o l~Xq ,q + 2rrq!R q 

(3.9) 

]'The definitionPn m used in [10] differs from the usual one (e.g., [12]) which is used throughout this paper. 
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' an+21g {~ tm[~ ln - ra{1]  
~ .  = u . x -  Y 2 (-1)" - " "  

m = o  n=ra (n--m)! ~by] ~ax] ~r2] 
(3.1o) 

aDran ~. ( _ 1 )  q +q (q+m)! Jo Xq m=o = q=m + m 21rq!R q (i) -ra cosmudu. 

In these forms the potentials ~b a and ~b B consist of a regular part and an infinite sum of singu- 
larities. The strength M,~ of a singularity, as occurring in (3.4), can be directly read from the 
above expressions. Since the force on each of the spheres must vanish, the equations of motion 
are, from (3.4), (3.9) and (3.10), 

0 = rva + 3r 
m--O 

I 1 

+2rra= E ~ ~ 
mffiO /ffiO n = l  

i,°-l/ 

(3.11) 

0 = ~ rvB + 3r 

1 

--  2 Ira2 2 
m=O 

[,°-l/ 

* / 28°~6°m + ~ lfl~lm~ 

t~=n 2 (--1)n÷mEmnEt(n+,)nra(n+2)l+'~61tSOrao6Ot61m 

The coefficients Dmn and Era, , are related to G and w by (2.17) and (2.18). Using these ex- 
pressions and also (2.1) and (2.9) we find, by addition and subtraction, from (3.11) and (3.12) 

d {Uo + Go(3gol -- 1)} = 3 a t  ~ {2aoWo(~oo + ,~oo) + a~w,(th~ + ,~,)}, (3.13) 

d {Ul - - G l ( 3 g , ,  + 1)} = 3 dt  ~a {G1Wo(~m -- Oqo) + GoWl(aOl -- fllO)}, (3.14) 

d 3 
a t  {WoO -- 3fOl)} = ~a {2G~'oo + G~tll + 2W~oo + w~na,}, (3.15) 
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at  {w,(1 + 311,)} = {aoa,( o, - h o )  + WOWl(nO, -nlO)}. (3.16) 

In these four equations for Go, GI ,  wo, wx the symbols a,/3, r/and ~" represent the following: 

o~mt = f (-- 1)"nra(n + 2) t+lgmnft(.+a) , (3 .17)  
/ '1=1 

l~ml = ~ (-- 1)nnra(n + 2)t+lfmngtcn+a) , (3 .18)  
nffil 

¢o 

r l m t =  ~. (-- 1)nnra(n + 2)l+lfranfl(n+l), (3.19) 
/"/= 1 

~mt = ~. (-- 1)nnm( n + 2)t+lgrangl(n+1). (3 .20)  
71=1 

The velocity acquired by the spheres at t = 0 ÷, and serving here as initial value, is obtained by 

putting the left-hand sides of (3.13)-(3.16) equal to zero, giving 

t = 0: w0 = Wl = 0, 

Uo U~ 
- , G1 - • (3 .21)  

Go 1 -- 3gin 1 + 3g11 

Using (2.1) and (2.9) and, for calculatinggm and g11, (2.6) and (2.8), this results in 

t = 0: VA, O = VB, o = Vo 

(fl// = 3 U  o 1 + Kol p 1 + 3 Kol p , 
p= 3  p=3 

(3.22) 

V.A, 1--'--., I "-~-Pl ~ 3UI (l-- p=3~ KIIp (R)P}/{ I-3 /9-3~- KIIp (R~}" (3.23) 

4. Trajectories o f  pairs o f  spheres 

The velocities v A and vB can be obtained from the equations given in the preceding section, 
with (3.22) and (3.23) as initial values. The velocity U is constant for t > 0. The description of 
the relative motion can be done in terms of R and 0, as depicted in Figure 1. From this figure 
and from (2.9), we have 



358 

dR 
- -  = --2Wo, ( 4 . 1 )  
dt  

dO 
R - -  = - - 2 w l .  (4.2) 

dt  

For the description of  the mean motion the coordinates Z1 and Z2 may be used. We want to 

give here some results of  the numerical computation of  trajectories from the pertinent equations, 

given in the previous section. 

8 

0o~ 15 

8 

o A 

'~oo %'00 g oo 8'.00 ~.oo A.oo :J 
, ° 6 0 

/ " C 

• n ~ O0 1 . 0 0  2'00 3'00 4'.00 

il 0 o =  7 0  ~ 

'1 • 0 0  0 .  O0 I • 0 0  2'. 0 0  

-I .00 " 0 . 0 0  I~.00 

o=6/ 

B 

3'. O0 4'. 00 

2 ~. O0 3', 00 4' 00 

Figure 2. Relative motion of two spheres. The pictures show the separation R and the angle 0 for several 
initial values of 0 o and R o = 4a. The unit along the axes represents 2a. (A) two spheres escaping from each 
other; (B) two spheres attracting each other; (C) oscillating trajectory with eventual escape;and (D) oscillating 
trajectory with eventual attraction. 

In Figure 2 A - 2 D  a number of  computed trajectories is shown. A point along a trajectory marks 

the length of  R, and the magnitude of  the angle 0 with the incoming flow direction. The unit 

along the axes is 2a. Each trajectory starts at t = 0. From the numerical calculations follows 
that three classes of  trajectories can be distinguished: 

Class I. Characteristic for this class is that R grows monotonously from the beginning, while the 

angle 0, after slowly increasing, reaches eventually a constant value. An example of  this class 

is shown in Figure 2A. 
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Class II. R decreases monotonously and 0 tends towards the value rr]2. An example is given in 

Figure 2B. Eventually R decreases below 2a which is physically impossible. Hence, a continu- 
ation of the trajectory after touching has to be given. For this there are several possibilities. One 
possibility is to assume that two particles stick together once they touch. Another possibility is 
to assume that the spheres just pass each other and continue their way. 

Class III. The behaviour of the trajectory becomes complicated, according to the numerical 
computations, when the starting position is under an angle of about 60.5 °. The distance R 

varies only very slowly initially, while the angle 0 starts oscillating around 0 = 1r/2. Eventually 
the two spheres in the pair either escape from each other, as for example happens with the pair 
the trajectory of which is shown in Figure 2C or they come together as in Figure 2D. This 
complicated behaviour, as illustrated by the above examples, may be understood qualitatively 
when we ignore in the calculations all the singularities except the dipoles. This approximation is 
of some additional interest because within the attained accuracy it is possible to determine 
quantitatively the effect of the relative velocity in a pair of spheres on the probability distribu- 
tion. This is done in Section 6. 

5. Approximate theory for trajectories 

With the help of (2.15) and of (2.6)'-(2.8), we derive from relations (3.17)-(3.20) 

aoo +3oo  = 0 , 

7 

0~10 - - f l 0 1  = O 

/31o--O~ol = 0 , (5.1)  

~-oo = - ~ - 1 ,  = 7 ~ 1  + o , 

~o, = - ~ 1 o  = 7 1 ~ !  + o , 

go1 = fo1  = 1 q._O 

gl l  = f l l  = - ½ + 0  
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From inserting these relations in (3.15) and (3.16), it follows that w grows to a magnitude of 
order U(a/R) a in a time of order R/U. The right-hand sides of (3.14) and (3.15) then are small 
of order (a/R) 9. Since aiR is at most 1/2, this is an extremely small quantity and it suggests 
itself to restrict attention to the relative motion assuming the mean motion to be given by its 
initial value, given in (3.22) and (3.23). Then we have, from (2.1) 

G = - - 2 U +  O(R)  3. (5.2) 

Using this relation and in addition (4.1), (4.2) and (5.1), we obtain, from (3.14) and (3.15) and 
using the appropriate relations for the acceleration in spherical polar coordinates, that to 
leading order in (a/R) 

d2R R [dO~21-- I - 36a3U2 
dt 2 ~dt] R-------T--- (3 cos20 -- 1), (5.3) 

d20 dR dO 72aaU 2 
R ~ + 2 ~ dt - R------ z -  cos 0 sin 0. (5.4) 

It is instructive to derive these relations in a more direct way. We start with (3.4) and take only 
the dipole M1 into account. For sphere A the strength of this is (VB -- U)aa/2. To leading order 
in (a/R) the velocity un induced in the centre of sphere B by the dipole in the centre of A, is 

--/vU' 3rq (5.5) 
3 UR ~ rl ~r, ffiR 

With this, we deduce from (3.4), assuming the force on sphere B to be zero, 

d { r v n .  4rra3(v B (V U'a3r, l  - -  3 = 0 .  ( 5 . 6 )  dt -U)/2}+aTr(Ua3"V)\ rl ],~=it 

A similar expression can be formulated for sphere A. Subtracting these expressions results in 

~{2(VA --VB)T}q- 81ra3(O'VR)VR = 0. (5.7) 

The subscript R in V R denotes differentiation with respect to R. Making use of 

dR 
v~--VA = ~ - ,  (5.8) 
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and carrying out of the differentiation gives again the equations (5.3) and (5.4). It is interesting 

and important to note that these can be formulated in terms of a Lagrangian L given by 

with 

[kdt ] ~dt] J 
(5.9) 

12a a U 2 
- R ~  (3 cos20 -- 1). (5.10) 

It is easily verified that (5.3) and (5.4) are the Euler equations of the Lagrangian variational 
principle applied to L. The quantity ~ plays the r61e of a potential energy. As explained in 
Section 1, the relative acceleration between spheres is completely due to the 'velocity squared' 
term in Bernoulli's equation. Obviously the associated force can in the present approximation 

be derived from a potential. There is therefore, a constant of the motion, ~o,  say, given by 

+½ \ a t /  + \ a t /  = 
(5.10 

The sum of potential and kinetic energy remains constant for the relative motion because the 
mean velocity does not change in the present approximation. Writing 

d R  
V = - -  (5.12) 

dt 

we may summarize (5.3) and (5.4) as 

d 
- - V  = V~2. (5.13) 
dt 

We can derive from these equations a number of properties of the trajectories. Let us denote 
the initial values of 0 and R with 0o and R0, for some trajectory. Let us further denote with 
0 c the value of 0 such that 

3cos20 c - 1  = 0, (5.14) 

which means 

0c ~ 54 °. (5.15) 

From (5.10) and (5.11) it follows that 
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3 cos20o -- 1 3 cos20 -- 1 

R~ R 3 
~> 0. (5.16) 

The initial value may be such that 

3 cos20o -- 1 < 0, (5.17) 

3 cos20o -- 1 > 0 ,  (5.18) 

3 cos20o -- 1 = O. (5.19) 

It suffices to restrict to values of  0 between 0 and ~r because symmetry permits to extend the 

results to other values. We consider first initial values of  0 obeying (5.17). This means, with a 
view to (5.14), that 

0e < 0o < 7r --  0e, (5.20) 

a region denoted with I in Figure 3. For these values of  0o and at the same time with Ro/R < 1, 
it follows from (5.16) that 

0o < 0 < 7r - 0o. (5.21) 

For values of  00 in the region (5.20) but withRo/R > 1,0 may be everywhere in 0 c < 0 < rr --  

0 e. To decide on Ro/R we derive from (5.3), (5.4) and (5.11) that 

/ --77. = R--- ~ ( 3 c o s 2 0 o - - 1 ) + ½  - -  ( 3 c o s 2 0 - - 1 )  . (5.22) 

This shows that for 0o obeying (5.17) and 0 obeying (5.21), the right-hand side of  (5.22) is 

negative. Hence, R decreases continuously. 

We conclude therefore: 

0 e < 0 o < l r - - 0  e ~ 0 e < 0 < r r - 0 e ,  and Ro/R>I. (5.23) 

This is found in the numerical results also. The angle 0 e appears to be about 61 ° in the exact 

calculation. Next we consider values of  0o according to (5.18). To see how the relative motion 

develops after the initial moment, we first look at the angle 0. Since at t = 0 both dR/dt and 

dO/dt are zero, it follows from (5.4) that 0 starts to move towards 0 = rr/2. Hence, from (5.22), 

R grows initially. If  R grows so rapidly that dO/dt becomes virtually zero before 0 = 0 e is 
reached (or l r - -0  e if 0o > T r - - c ) ,  then the asymptotic state is, as follows from (5.10) and 
(5.11), 

dR dO 
dt ( 2 ~ ° ) u 2 '  dt O. (5.24) 
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Figure 3. Results from approximate theory of Section 5 for relative motion between two spheres. 

This is in complete agreement with the numerical results. Accordingly we may call most of  the 

region where (5.18) applies the region of  repulsion. This region is indicated with II in Figure 3. 

In contrast we might call region I the region of  attraction. The asymptotic state (5.24) is 

reached by trajectories whose initial values obey (5.18), but not by all of  these, however. When 

(3 cos20o -- 1) is very small but positive, or zero, the initial change of  R is small. The angle 0, 
always starting to move towards 0 = 1r/2, may then increase beyond 0 = 0 e (or decrease below 

0 = rr -- 0e). In that case R may both decrease or increase. In either case the change in R 

remains initially small. Trajectories starting in this narrow region adjacent to 0 = 0 e apparently 

agree with those resulting from the numerical computations in which the trajectory performs 

a number of  oscillations before eventually ending up in region I or in region II. In this connec- 

tion it is useful to point out that for 0o ~ 0e, it is easy to derive from the equations of  motion 

that for small times t 

0 = 0o + O ( t 2 ) ,  R = Ro + O(t4) .  

This shows that for small times the rate of  change of  R is much smaller than the rate of  change 

of 0. 

6. Effect of  relative motion on particle distribution 

When one wishes to determine averages in a bubbly flow and one uses ensemble averaging, then 
the pair probability distribution is needed when interactions between a test bubble and one 
neighbour are considered. This distribution, giving the probability of  finding a bubble at 
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x + R, given that there is one with centre in x, is not a given quantity (which is the case with an 
inhomogeneous solid material for example) but follows from some initial value and the develop- 
ment of the flow. Batchelor and Green [11] have, for example, considered pair distribution 

functions in suspensions governed by viscous effects. Let us suppose that for t < 0, that is 
before the motion discussed in the preceding sections started, the bubbles are completely 

random distributed and have number density n. Then at t = 0, the pair probability function 
P(R, t) is given by 

P(R, 0) = O, when R < 2a, 
(6.1) 

P(R, 0) = n, when R > 2a. 

After t = 0 the bubbles start to move relative to each other as we have seen. This relative 

motion changes P(R, t), and we may ask for the eventual steady distribution, if existing. The 
evolution of P(R, t) is governed by (see for example Batchelor and Green [11] ) 

aP 
a t  + v-  (PV) = o, (6.2) 

where V is defined by (5.12). The above expression states that in R, t-space the total number of 
pairs is conserved. When V is known, as solution in our case of (5.13), then P may be found 
from solving (6.2) with the initial condition (6.1). In the special case of the approximation of 

the previous section, the solution for P can be found without knowing V. For this we observe 
first that, as follows from (5.7) and (5.10), ~2 is a harmonic function satisfying Laplace's 
equation. Taking the divergence of both sides of equation (5.13) gives 

V .  d V  V .  a v  
a t  = + v . { ( v . v ) v }  = = o. (6.3) 

Since V is irrotational we have 

(V 'V)V = V(~V2). (6.4) 

The kinetic energy ½ V 2 satisfies Laplace's equation as well, which follows from V2~2 = 0, 
(5.11) and (5.12). Hence from (6.3) 

0 
at v . v  = o. (6.5) 

Initially V = 0 (remember that at t = 0 there is no relative velocity) and, therefore, V. V 
remains zero at t > 0, therefore, (6.2) reduces to 

0P 
- -  + V" VP = O. ( 6 . 6 )  
at 
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This means that the probabili ty distribution remains constant along trajectories in R, t-space. 

Since initially we have supposed a completely random distribution, the latter continues to be 

so after t = 0. This is an important  result because it relieves one from the task of  calculating for 

each type of  mot ion the associated distribution function. In the theory of  suspensions governed 

by low-Reynolds-number effects, such calculations are requisite (see e.g., Batchelor and Green 

[ 11 ] ). The question naturally arises whether the result (6.6) holds also for the specific problem 

of  this paper. Inspection shows that this is not the case. The reason for this is that the relative 

motion cannot be derived from a Lagrangian in this specific problem, because energy is shared 

between the mean motion and the relative motion. However, we have shown that this effect is 

of  order (a /R)  9 . Hence to that order of  accuracy it may be said that an initially random distri- 

bution remains so. 
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